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a b s t r a c t 

Alzheimer’s disease (AD) is an irreversible and progressive neurodegenerative disease. The close AD mon- 

itoring of this disease is essential for the patient treatment plan adjustment. For AD monitoring, clinical 

score prediction via neuroimaging data is highly desirable since it is able to reveal the disease status, 

adequately. For this task, most previous studies are focused on a single time point without considering 

relationship between neuroimaging data (e.g., Magnetic Resonance Imaging (MRI)) and clinical scores at 

multiple time points. Differing from these studies, we propose to build a framework based on longitudi- 

nal multiple time points data to predict clinical scores. Specifically, the proposed framework consists of 

three parts, feature selection based on correntropy regularized joint learning, feature encoding based on 

deep polynomial network, and ensemble learning for regression via the support vector regression method. 

Two scenarios are designed for scores prediction. Namely, scenario 1 uses the baseline data to achieve 

the longitudinal scores prediction, while scenario 2 utilizes all the previous time points data to obtain the 

predicted scores at the next time point, which can improve the score prediction’s accuracy. Meanwhile, 

the missing clinical scores at longitudinal multiple time points are imputated to solve the incompleteness 

of the data. Extensive experiments on the public database of Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) demonstrate that our proposed framework can effectively reveal the relationship between clinical 

score and MRI data and outperforms the state-of-the-art methods in scores prediction. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Alzheimer’s disease (AD) is an irreversible neurodegenerative

isease that results in progressive loss of memory and other men-

al functions. It is a major cause of dementia and is the sixth prin-

ipal cause of death in the United States [1] . AD possess a mass of

opulation and has given rise to a huge economic burden to the

ociety. In 2018, there is about 50 million AD patients in the world

nd has caused about 1 trillion US dollars economic cost, and this

ill be doubled by 2030 [2] . Therefore, AD has garnered growing

ttention in the last several years. Several previous studies have
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evealed that AD may affect both functions and structures of the

rain [3 , 4] . It is characterized by a decline in cognitive competence

uch as memory and problem-solving, which seriously affects per-

on’s activity of daily living. The accurate diagnosis of AD is highly

mportant for patients to receive timely treatment and can delay

he progression of the disease as much as possible. During the

ast few decades, neuroimaging techniques such as positron emis-

ion topography (PET) [5 , 6] and magnetic resonance imaging (MRI)

7 , 8] are dominant tools to expedite AD diagnoses and treatments

9–11] . 

Most of the existing researches focus on developing novel clas-

ification frameworks at a single time point to predict class labels

uch as normal control (NC) and AD, by the patterns in neuroimag-

ng data [4 , 5] . Lately, regression analysis models have also been

tilized to predict longitudinal clinical scores, like the AD assess-

ent scale-cognitive subscale (ADAS-Cog) [12] , the clinical demen-
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tia rating-global and the sum of boxes (CDR-GLOB and CDR-SOB)

[13] , and mini-mental state examination (MMSE) using MRI and/or

PET data [14 , 15] . There are many studies on longitudinal clinical

score prediction since it can help evaluate the status of patients

and predict disease progression. For example, Wang et al. [15] pro-

posed a high-dimensional kernel regression framework to achieve

the prediction of MMSE and ADAS-Cog. Duchesne et al. [16] em-

ployed the linear regression method from MRI to evaluate one year

MMSE changes. However, these regression framework mainly fo-

cus on the traditional machine learning methods, and still face the

challenge of missing data [17] , which is caused by a variety of sub-

jects dropping out for various reasons at different time points. 

Different from existing studies, we design a novel combined

machine learning and deep learning framework to realize the lon-

gitudinal clinical score prediction. The regression process is de-

vised in two scenarios. In scenario 1, only the baseline data is uti-

lized for training to achieve longitudinal clinical score prediction,

which is similar to the traditional methods used in previous stud-

ies [18 , 19] . Then, we design a novel training framework in scenario

2, where all the previous time points data is combined for clinical

score prediction at next time point. As for data missing problem,

one common approach to deal with the incompleteness is to re-

move the subjects with missing scores, which results in reduction

of available subjects and limits our investigation. Another approach

is to imputate missing scores via interpolation methods, which is

heavily dependent on temporal smoothness and can be biased if

the subject’s situation exacerbates. Considering these shortcom-

ings, we propose to combine all the available data at previous and

current time points to achieve the clinical scores prediction. Mean-

while, the missing clinical scores are imputated by our proposed

regression framework, and thus the problem of data incomplete-

ness that presents at multiple time points is solved. 

With the multiple time points data, one difficulty faced by the

prediction task is the overfitting. This problem can be addressed

by two ways. One way is by feature selection [18] , and the other

way is by subspace learning. The first category includes statistical

Chi-squared methods, t -test, and sparse models [20] , which is ad-

vantageous in identifying biomarkers. The second category projects

features into a low-dimensional space [21] , which demonstrates

preferable performance in indicating disease status. Therefore, it

is advantageous for clinical scores prediction by combining the

strengths of the above categories [22] . Inspired by this, we explore

the temporally constrained group LASSO method [23] to realize the

feature selection. In addition, the correntropy [24] is incorporated

to eliminate outliers and improve prediction performance. 

A great success has been witnessed by the recent development

of deep learning (DL) method [25] especially for AD diagnosis and

prognosis [26 , 27] . As a particular type in the renaissance of DL,

deep polynomial network (DPN) [28] is an effective and supervised

method with solid theoretical foundation. DPN attempts to build

a network that offers a superior approximation basis for the val-

ues achieved by all polynomials of bounded degree on the train-

ing cases. By integrating features between different dimensions

and samples through the network in a hierarchical way, feature

representation performance can be greatly boosted. It has simi-

lar or even better performance compared with the sparse autoen-

coder and deep belief networks algorithms on some image datasets

[29] . Hence, it would be beneficial to combine the temporally con-

strained group LASSO model with deep feature representation via

DPN for accurate prediction performance. 

In this paper, the proposed regression framework develops a

feature selection method based on the correntropy [30] , tempo-

rally constrained group LASSO (CT), and feature encoding in DPN

to realize the longitudinal clinical score prediction. The ensemble

learning technique is also utilized via the support vector regres-

sion (SVR) [31] method. We name the proposed method as CTDE,
here ’D’ stands for DPN based feature encoding model and ’E’ is

or ensemble. Extensive experiments demonstrate that, the over-

ll CTDE model achieves superior performance than partial mod-

ls, such as the model with only feature encoding or only feature

election. The extensive experiments have been performed to vali-

ate the proposed method and details are described in the follow-

ng sections. Our main contributions are summarized as below: 

(1) The proposed framework addresses both longitudinal char-

acteristics and data incompleteness presented in the ADNI

[32] database. 

(2) An effective feature selection model is developed by incor-

porating the temporal constraint and the correntropy, fol-

lowed by the implementation of an efficient optimization al-

gorithm. Hereby, the most relevant features can be found. 

(3) The combination of correntropy regularized joint learning

and DPN promotes the advantages of each other in the sense

of increasing the prediction accuracy and discovering AD

biomarkers. 

(4) Instead of concatenating the output of all DPN layers, a

weighted ensemble method is proposed to further explore

the benefits of feature encoding via DPN. 

. Materials 

.1. Data acquisition 

In this work, we obtain the dataset from the public Alzheimer’s

isease neuroimaging initiative (ADNI) database as it is the most

opular database to analyze development process of AD. A total of

05 subjects including the baseline MRI T1-weighted (T1w) data

nd various clinical scores (ADAS-Cog, CDR-GLOB, CDR-SOB, and

MSE) at baseline are utilized in this study. A return visit was ex-

ected at the 06th month (M06), 12th month (M12), 18th month

M18), 24th month (M24), and 36th month (M36) from baseline.

s shown in Fig. 1 , the proposed longitudinal scores prediction

odel is conducted for two scenarios. Specifically, scenario 1 is the

raditional training model, where only baseline data is employed

o realize the scores prediction at future time points. Scenario 2

s a novel method to improve the scores prediction performance,

here all the previous time points data are combined to get the

redicted scores at next time point, which not only increases the

uantity but also considers the correlation between subjects at

ultiple time points. 

In particular, the splits of the training and testing set in two

cenarios are different. In scenario 1, we employ the baseline data

e.g., MRI data and four type of clinical scores) to be the training

et, and the testing set will change with time. For example, we put

he MRI data at M06 as the testing set into the proposed regres-

ion framework to predict the scores at M06, and the MRI data at

12 as the testing set into the framework to predict scores at M12.

ut there is a big difference between the two scenarios. In scenario

, both the training and testing set will change when we predict

cores at different time points. We take the clinical scores predic-

ion at M06 for example. The training set is MRI data and scores

t baseline, and the testing set is the MRI data and scores at M06.

fterwards, we predict the clinical scores at M12 by the proposed

egression framework. The training set is the MRI data and scores

t all previous time points (i.e., baseline, M06). The testing set is

he MRI data and scores of subjects at M12. Ultimately, we can ob-

ain the predicted clinical scores at M12. The other time points can

e obtained in the same manner too. The details of our dataset in-

ormation are presented in Table 1 . The first part of the category is

he number of available subjects with MRI data, and other one is

he subjects both MRI and clinical scores. 
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Fig. 1. Two different scenarios for clinical scores prediction at multiple time points. 

Table 1 

Number of subjects used in our experiments at different time points. 

Category Clinical score Baseline M06 M12 M18 M24 M36 

MRI data MMSE 805 725 675 282 479 50 

CDR-SOB 805 725 675 282 479 50 

CDR-GLOB 805 725 675 282 479 50 

ADAS-Cog 805 725 675 282 479 50 

MRI data and 

clinical score 

MMSE 805 705 637 247 430 50 

CDR-SOB 805 725 675 280 473 50 

CDR-GLOB 805 722 667 280 473 50 

ADAS-Cog 805 725 674 281 477 50 
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Table 2 

List of the used notations in this paper. 

X t The feature matrix of N subjects at t time point 

Y t The clinical scores of N subjects at t time point 

x i t The i th row vetor of X t 
x t, j The j th column vetor of X t 
x i 

t, j 
The element in i th row and j th column of X t 

W The weight matrix across all time points 

w a vector of W 

‖ X t ‖ 2, 1 The l 2 , 1 norm of X t , i.e., ‖ X t ‖ 2 , 1 = 

∑ 

i 

√ ∑ 

j 

( x i 
t, j 

) 
2 
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From Table 1 , we note that clinical scores of some subjects are

issing at different time points (i.e., M24). For example, there are

25, 675, 282, 479, and 50 subjects with MRI data at the five time

oints from baseline, respectively. Among these subjects, only 705,

37, 247,430 and 50 subjects have MMSE clinical scores. Hence, we

ropose to imputate the missing scores by the regression frame-

ork. We take MMSE clinical scores prediction at M06 for exam-

le. In scenario 2, we put the MRI data of the subject who has MRI

ata but without the clinical scores at M06 into the proposed re-

ression framework and get the predicted missing clinical scores.

hen we put the predicted missing clinical scores into the incom-

lete clinical scores obtained by return visit at M06. Therefore, we

btain the complete clinical scores at M06. Moreover, we put the

ata into the proposed regression framework to predict the clini-

al scores at M06. In the experiment, the baseline data is defined

s the training set and the complete data at M06 is defined as the

esting set. Namely, all the previous time points data are utilized to

chieve clinical scores prediction at next time point. The prediction

t other time points can be achieved in the same manner. 

.2. Feature extraction 

We preprocess MRI data with the same method in [33] , which

s divided into four steps as below: 

1) The intensity homogeneity is corrected through N3 method

[34] , and skull of brain is removed. 

2) The FAST in the open source software package FSL ( http://fsl.

fmrib.ox.ac.uk/fsl/fslwiki/ ) is employed to segment the brain tis-

sue into cerebrospinal, gray matter (GM), and white matter

(WM) [35] . 

3) The HAMMER tool [36] is applied to register the segmented im-

ages to a commonly used Jacob atlas. It is a T1w GM parcella-

tion with 93 cerebral regions of interest (ROIs) using the corre-

sponding anatomic definitions. 
4) The volumes of the 93 ROIs for each subject are calculated and

normalized through the total intracranial volume, and utilized

as features in this paper. 

. Methods 

.1. System overview 

The overall architecture of our proposed longitudinal scores

rediction framework is illustrated in Fig. 2 . The procedures of the

egression framework include feature extraction, feature selection,

eature encoding and final SVR regression. The details of the pro-

osed method are described in the following subsections. 

.2. Feature selection via joint learning 

In this paper, there is N number of all subjects and the MRI data

ith clinical scores of each subject are derived from T different

ime points. Let the X t = [ x 1 t ; . . . ; x i t ; . . . ; x N t ] ∈ R 

N×D and Y t ∈ R 

N×1 

tand for the D -dimension MRI data and scores of all subjects

t time point t , respectively, x i t ∈ R 

1 ×D denotes the D -dimensional

ow vector at time point t, t = 1…T . Note that, uppercase boldface

etters represent matrices while small bold letters are vectors. We

ummarize all notations in Table 2 . 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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Fig. 2. Flowchart of the proposed method with deep and joint learning. 
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Due to the high dimensionality of MRI features and small sam-

ple size, it is easy to lead to the problem of overfitting, which

can affect the analysis of experimental results. Hence, the sparsity

inducing regularization method has been proposed to reduce the

high dimensionality of MRI features [37] , such as LASSO [38] . The

standard group LASSO method is formulated as 

argmin 

W 

1 

2 

T ∑ 

t=1 

Y t − X t w t 
2 
2 + ρ0 ‖ W ‖ 2 , 1 , (1)

where W = [ w 1 , · · ·, w t , · · ·, w T ] ∈ R 

D ×T is weight coefficient ma-

trix of all time points and X t w t = Y t is utilized to evaluate the

scores at t time point, where w t ∈ R 

D ×1 holds different weights

of each feature. The ‖ W ‖ 2, 1 denotes the regularization term which

can improve the generalization ability, and ρ0 is regularization pa-

rameter. The l 2 , 1 norm [39 , 40] W 2 , 1 = 

∑ T 
t=1 w t 2 is used for joint

feature selection by penalizing weight coefficients in the same row

of W , and then features corresponding to the small weight coeffi-

cients are discarded. In addition, a fused smoothness term [41] is

incorporated into the group LASSO model to explore the tempo-

ral characteristics of longitudinal data. The fused smoothness term

can minimize the weight difference over time and fully explore the

longitudinal similarity. The Eq. (1) can be rewritten as 

argmin 

W 

1 

2 

T ∑ 

t=1 

Y t − X t w t 
2 
2 + ρ0 W 2 , 1 + ρ1 

T −1 ∑ 

t=1 

w t − w t+1 
2 
2 . (2)

Furthermore, we add correntropy into the model to remove the

potential outliers such as non-Gaussian noise and impulsive noise.

The joint feature selection model with correntropy is finally de-

fined as 

argmin 

W 

1 − 1 

2 

T ∑ 

t=1 

exp 

(
−Y t − X t w t 

2 
2 

ρ2 

)
+ ρ0 W 2 , 1 

+ ρ1 

T −1 ∑ 

t=1 

w t − w t+1 
2 
2 , (3)

where ρ1 and ρ2 are positive tuning parameters, ρ2 refers to the

kernel size and dominates the properties of the correntropy. Fi-

nally, Eq. (3) can obtain the informative features which are favor-

able for the following scores prediction. 
To solve Eq. (3) , we use the accelerated gradient method (AGM)

42] to optimize the objective function. Specifically, the objective

unction f ( W ) described in Eq. (3) is divided into two parts, one

s a smooth function f s ( W ), and the other is non-smooth function

 ns ( W ), where 

f s ( W ) = 1 − 1 

2 

T ∑ 

t=1 

exp 

(
−Y t − X t w t 

2 
2 

ρ2 

)
+ ρ1 

T −1 ∑ 

t=1 

w t − w t+1 
2 
2 , (4)

f ns ( W ) = ρ0 W 2 , 1 . (5)

Supposing k is the iteration index and W 

k is weight matrix at

he iteration index k , the first-order Taylor expansion is employed

t W 

k for f s ( W ) and obtain an proximate composite function of f ( W )

43] as the model g( · ) using 

 L, W 

k = f s 
(
W 

k 
)

+ 

〈
f ′ 
(
W 

k 
)
, W − W 

k 
〉

+ 

L 

2 

W − W 

k 2 

F + f ns 

(
W 

k 
)
, 

(6)

here < A,B > = Tr( A 

T B ) denotes the matrix inner product. The ‖ · ‖ F
enotes the Frobenious norm [44] and the regularization term

 /2 W − W 

k 2 

F keeps W 

k in the neighborhood of W . L is a regular-

zation parameter and L > 0. At the k -th iteration, U 

k is the affine

ombination of W 

k and W 

k −1 , which is defined as 

 

k = W 

k + βk 

(
W 

k − W 

k −1 
)
, (7)

ith the carefully selected parameter βk . Hence, the approximate

olution of W 

k +1 is given by minimizing g L k , U k 
(W ) , and W 

k +1 is

sed to solve the l 2 , 1 -norm regularized Euclidean projection prob-

em, where L k is found by line search on the basis of the Armijo-

oldstein rule. After ignoring constant terms, Eq. (6) can be rewrit-

en as 

 

k +1 = arg min 

W 

1 

2 

W − V 

2 
F + 

1 

L k 
f ns ( W ) = 

argmin 
w 1 ···w D 

1 

2 

D ∑ 

j=1 

w j − v j 
2 
2 

+ 

ρ0 

L k 
f ns w j 2 

, (8)

here V = U 

k − 1 / L k f ′ ( U 

k ) , and w j and v j represent j -th row of W

nd V , respectively. Therefore, the problem changes into D sepa-

ate subproblems, and we use the algorithm [45] to calculate the
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Algorithm 1 

Optimization algorithm for correntropy based joint group learning. 

Input: ρ0 > 0, ρ1 > 0, ρ2 > 0 L 0 > 0, W 

0 , K 

Output: W 

K+1 

1: Initialize W 

1 = W 

0 , α−1 = 0, α0 = 1, and L = L 0 
2: for k = 1 to K do 

3: βk = 

αk −2 −1 
αk −1 

, U 

k = W 

k + βk ( W 

k − W 

k −1 ) 

4: Update W 

k +1 in Eq. (8) 

5: Find the minimum value of L among { L k −1 , 2 L k −1 , · · ·}, . . . ,such that f ( W 

k +1 ) ≤g L k , U k ( W 

k +1 ) 

6: Update L k = L 

7: αk +1 = 

1+ 
√ 

1+4 α2 
k 

2 

8: end for 
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s  
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ptimal solution w 

∗
j as 

 

∗
j = 

{ (
1 − ρ0 

L v j 2 

)
i f 

(
v j 2 > 

ρ0 

L k 

)
0 otherwise. 

. (9) 

The convergence rate is O (1/ K 

2 ) as the optimization algorithm

s an exact AGM and K is the maximum iteration number. The

verall procedure is described in Algorithm 1 . 

.3. Feature encoding via deep polynomial network 

The DPN is able to describe any function on a certain number

f dataset succinctly due to its network architecture. The learned

redictors are polynomial functions over input space since each of

PN node calculates a linear or quadratic function of the input. In

rder to present complex predictions compactly, DPN builds a deep

rchitecture, which relies on its multi-layered structure. The width

f DPN is denoted as the maximum number of nodes in each layer,

nd the depth is denoted as the number of layers. The predictors

f DPN are the polynomial function on the input space. There is a

egree-4 network architecture as an example in Fig. 2 . Following

he feature selection in Section 3.2 , it is assumed that each subject

as M -dimension features with M < D . Here, we take the DPN ap-

lication at t time point as an example. Starting from constructing

he first degree in DPN, the approximate basis is given by (
z , 

[
1 x 

1 
t 

]
, z , 

[
1 x 

2 
t 

]
, · · · , z , 

[
1 x 

N 
t 

])
: z ∈ R 

M+1 
}
, (10) 

hich is the ( M + 1)-dimensional linear subspace of R 

N . To

onduct a basis for it, the singular value decomposition

SVD) is applied to find M + 1 vectors z 1 , z 2 , · · · z M+1 , so that

 ( z i , [ 1 x 
1 
t ] , z i , [ 1 x 

2 
t ] , · · · , z i , [ 1 x 

N 
t ] ) } M+1 

i =1 
are linearly independent.

e denote a linear transformation matrix Z which is used to map

 1 X t ] into the constructed basis, where 1 is the all-ones vector.

he columns in Z represent the M + 1 linear functions, which form

he 1-st layer network in DPN. Let the F 1 ∈ R 

N×( M+1 ) denotes the

utput of the first layer with the independent vectors as columns. 

According to the decomposition theorem of polynomials in [46] ,

ny polynomial of degree P can be obtained by the degree - ( P −1)

olynomials and the degree-1 polynomials, and the more network

ayers are built in the same way. Taking the construction of the P th

ayer network as an example, we define the new matrix 

˜ 
 

P = 

[ 
(F P−1 

1 ◦ F 1 1 )(F P−1 
1 ◦ F 1 2 ) · · · (F P−1 

1 ◦ F 1 | F 1 | ) · · · (F −1 
| F P−1 | ◦ F 1 | F 1 | ) 

] 
, 

(11) 

here F i denotes the i -th column of the output matrix of DPN

ayer, | · | stands for the number of columns, and the ◦ opera-

ion represents the Hadamard product. Let F P be a subset of the

olumns of ˜ F P . F P generates the basis of degree- P polynomial, and

t can be obtained by SVD to select the linear independent columns

rom 

˜ F P . Finally, the output of all DPN layers creates the matrix of

ncoded features. 
.4. Weighted ensemble prediction of clinical scores 

After the feature selection and feature encoding, the SVR

ethod is used for the prediction of clinical scores. Similar to the

upport vector machine (SVM) [47 , 48] , SVR tries for minimizing er-

or via individualizing the hyperplane which maximizes the mar-

in. Features of testing data are then mapped to the same space

o that the corresponding classes of the examples can be recog-

ized. Regression is a challenging task because it has infinite prob-

bilities. However, SVR can solve this task proficiently by a given

argin of tolerance. Since the features obtained from DPN are

rom different layers and possess their own characteristics, a sim-

le concatenation may not fully explore their benefits. Therefore, it

s more reasonable to deal with them separately. Here, SVR deals

ith matrix of encoded features which is the output of all DPN

ayers, then outputs R = [ R 

1 R 

2 · · · R 

P ] as the final prediction re-

ults, respectively. For the purpose of ensembling the prediction

esults to attain the best prediction performance, we propose the

ollowing optimization problem: 

in 

1 

2 

RG − Y 

2 
2 s.t 0 ≤ G i ≤ 1 & 

P ∑ 

i =1 

G i = 1 . (12)

Supposing the number of the training samples is N , the dimen-

ion of R is N × P , and G denotes the weight vector for predictions

f P layers. Y is ground truth vector and G i is the i th element of

 . After resolving the constrained linear least-squares problem in

q. (12) , we can obtain the optimal weights for ensemble predic-

ions based on features from different layers. 

. Results 

.1. Experiment setup 

We employ the proposed method in two scenarios to predict

cores (ADAS-Cog, CDR-GLOB, CDR-SOB, and MMSE) at five time

oints (M06, M12, M18, M24, M36) with the dataset obtained from

DNI database. The Pearson correlation coefficient (R) and mean

bsolute error (MAE) between the ground truth and the predicted

cores are applied to assess the overall prediction performance, re-

pectively. The definitions of R and MAE at single time point are

iven as: 

 = 

cov 
(
Y , ̂  Y 

)
σ ( Y ) σ

(
ˆ Y 

) , MAE = mean 

(∣∣Y − ˆ Y 

∣∣), (13)

here Y stands for the ground truth and 

ˆ Y denotes the predicted

cores, σ ( · ) is the standard deviation, and cov( · ) is the convari-

nce. 

.2. Scenario 1: predictions with baseline dataset 

In scenario 1, the proposed correntropy and temporally con-

trained group LASSO model is downgraded to the correntropy reg-

larized LASSO model since the training dataset are only baseline
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Fig. 3. Comparisons between CDE (in scenario 1), CTDE_incomplete (in scenario 2, without data filling), and CTDE in terms of the MAE of (a) MMSE; (b) CDR-SOB; (c) 

CDR-GLOB; (d) ADAS-Cog, and R of (e) MMSE; (f) CDR-SOB; (g) CDR-GLOB; (h) ADAS-Cog. 
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Fig. 3. Continued 

Fig. 4. Comparison of baseline performances for the competing methods. 
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ata, and the proposed model in scenario 1 is denoted as CDE.

or further evaluation of the composite CDE model, we compare

ts performance with that of partial model to investigate the role

f each part and prove the overall utility of the proposed model.

pecifically, the proposed CDE model is mainly divided into the

hree portions, such as SVR, CLS, DPNS. Specifically, CL is short for

eature selection incorporating correntropy. CLS is the combination

f the CL and SVR. DPNS is the combination of the DPN and SVR.

he results are shown in Table 3 . We observe that the composite

odel CDE gets the largest R and the smallest MAE, and proves

dvantages of the concatenation of feature selection and encoding.

.3. Scenario 2: predictions with longitudinal dataset 

In scenario 2, MRI data and clinical scores at previous time

oints are utilized to predict scores at the next time point. The

roposed model consists of the feature selection incorporating cor-

entropy and temporal constraints (CT), DPN based feature encod-

ng (DE), and ensemble SVR, which is denoted as CTDE. Since CTDE

s a composite model, we compare its performance with that of

artial models to evaluate the role of each part and prove the

verall utility of the proposed composite model. Here, CTS is the

ombination of CT and SVR while DPNS is the combination of

PN with SVR. The comparison results are summarized in Table 4 .

rom these results, it is found that the proposed composite model

TDE attains the largest R and smallest MAE, which proves the ad-

antages of the concatenation of feature selection and encoding.

eanwhile, the missing clinical scores of many subjects at differ-
nt time points are filled and then be utilized for future scores

rediction. 

Furthermore, we conduct a comparative experiment to verify

he effectiveness of scores completion. In the CTDE model, we

onduct the scores completion experiment to imputate the miss-

ng clinical scores of many subjects at different time points and

hen these scores are utilized for future scores prediction. Simul-

aneously, the model without this imputating process is defined

s CTDE_incomplete model and the experimental results are illus-

rated in Fig. 3 . From the experimental results, it is found that

TDE model has an obvious improvement of scores prediction ac-

uracy. The main reason is that, there are an increase in the num-

er of training samples and thus a larger range of scores is covered.

.4. Baseline predictions performance 

In addition to predicting the longitudinal scores at multiple

ime points, we also use the cross-validation method to evaluate

aseline prediction performance and indicate the versatility of the

roposed model. The CDE model in scenario 1 is compared with

revious methods such as SVR, CLS model. The experiments are

onducted using a 10-fold cross-validation. Specifically, the base-

ine MRI data and corresponding clinical scores are randomly di-

ided into ten subsets. Ten percent of the dataset is utilized for

esting and the remaining is utilized for training. We repeat this

rocess ten times to obtain the generalization results. The experi-

ental results are obtained by averaging the repeated experimen-

al results. The barplot of MAE and R are shown in Fig. 4 . By con-
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Fig. 5. Comparisons between the proposed model and state-of-the-art methods. The MAE of (a) MMSE; (b) CDR-SOB; (c) CDR-GLOB; (d) ADAS-Cog, and the R of (e) MMSE; 

(f) CDR-SOB; (g) CDR-GLOB; (h) ADAS-Cog. 
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Fig. 6. MAE comparisons between LS (CLS without correntropy), CLS, LDE, CDE. (a) MMSE; (b) CDR-SOB; (c) CDR-GOLB; (d) ADAS-Cog. 

Table 3 

The MAE and R of various models for comparison in Scenario 1. 

Month Method MAE R 

MMSE CDR-SOB CDR-GLOB ADAS-Cog MMSE CDR-SOB CDR-GLOB ADAS-Cog 

M06 SVR 2.430 1.277 0.291 5.694 0.592 0.705 0.607 0.635 

CLS 2.056 1.114 0.212 5.022 0.656 0.760 0.749 0.654 

DPNS 2.117 1.192 0.248 5.316 0.628 0.721 0.742 0.636 

CDE 2.026 1.017 0.125 4.817 0.669 0.771 0.806 0.675 

M12 SVR 2.518 1.460 0.322 6.425 0.632 0.702 0.596 0.636 

CLS 2.111 1.267 0.246 5.757 0.673 0.706 0.679 0.652 

DPNS 2.172 1.362 0.279 6.276 0.630 0.673 0.702 0.633 

CDE 2.080 1.194 0.178 5.602 0.686 0.753 0.720 0.684 

M18 SVR 2.408 1.238 0.277 5.664 0.483 0.500 0.306 0.501 

CLS 2.134 1.096 0.218 5.161 0.513 0.523 0.322 0.516 

DPNS 2.103 1.120 0.227 5.302 0.524 0.499 0.239 0.516 

CDE 2.088 1.116 0.156 4.896 0.564 0.539 0.333 0.589 

M24 SVR 2.719 2.013 0.414 7.895 0.651 0.746 0.669 0.600 

CLS 2.235 1.746 0.332 6.956 0.668 0.664 0.699 0.592 

DPNS 2.363 1.909 0.358 7.727 0.653 0.724 0.696 0.710 

CDE 2.239 1.731 0.291 6.645 0.683 0.775 0.699 0.711 

M36 SVR 2.496 1.178 0.326 5.922 0.631 0.514 0.567 0.488 

CLS 2.039 1.122 0.253 5.318 0.640 0.541 0.636 0.511 

DPNS 2.185 1.182 0.290 5.829 0.628 0.527 0.551 0.594 

CDE 2.032 1.113 0.188 5.287 0.697 0.628 0.779 0.719 
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Table 4 

The MAE and R of various models for comparison in Scenario 2. 

Month Method MAE R 

MMSE CDR-SOB CDR-GLOB ADAS-Cog MMSE CDR-SOB CDR-GLOB ADAS-Cog 

M06 SVR 2.096 1.124 0.232 5.060 0.592 0.706 0.715 0.620 

CTS 1.964 1.025 0.142 4.861 0.666 0.760 0.792 0.654 

DPNS 2.036 1.039 0.169 5.008 0.631 0.743 0.751 0.643 

CTDE 1.949 0.944 0.124 4.781 0.687 0.784 0.815 0.690 

M12 SVR 2.030 1.221 0.253 5.575 0.670 0.743 0.708 0.646 

CTS 1.890 1.009 0.149 5.356 0.734 0.799 0.769 0.712 

DPNS 1.907 1.112 0.170 5.462 0.722 0.785 0.767 0.726 

CTDE 1.801 0.965 0.133 5.099 0.737 0.813 0.786 0.750 

M18 SVR 2.046 1.029 0.213 4.937 0.577 0.615 0.576 0.538 

CTS 1.939 0.883 0.134 4.803 0.723 0.733 0.621 0.685 

DPNS 1.944 0.948 0.144 4.762 0.707 0.705 0.504 0.683 

CTDE 1.777 0.861 0.122 4.521 0.746 0.754 0.578 0.746 

M24 SVR 1.982 1.590 0.318 6.340 0.747 0.829 0.672 0.742 

CTS 1.847 1.416 0.204 6.010 0.772 0.862 0.783 0.713 

DPNS 2.085 1.521 0.257 6.860 0.750 0.825 0.780 0.732 

CTDE 1.840 1.396 0.203 5.736 0.760 0.878 0.845 0.779 

M36 SVR 1.886 1.086 0.268 5.003 0.735 0.658 0.760 0.658 

CTS 1.786 0.842 0.136 4.996 0.798 0.776 0.837 0.717 

DPNS 1.815 1.126 0.259 5.336 0.740 0.552 0.685 0.681 

CTDE 1.756 0.816 0.130 4.981 0.858 0.813 0.852 0.830 

Fig. 7. Investigation of each layer. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The most discriminative ROIs for the prediction of four type of clinical 

scores. From top to bottom: MMSE, CDR-SOB, CDR-GLOB and ADAS-Cog, respec- 

tively. Here, different colors denote different ROIs. 
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trast, the proposed CDE model is effective and outperforms the

other competing methods. 

5. Discussion 

5.1. Advantages over state-of-art methods 

To reveal the effect of our proposed CTDE prediction network,

we compare the performance with the state-of-the-art methods

[46 , 49 , 50] . Specifically, Cui et.al put forward a classification frame-

work based on Recurrent Neural Networks (RNN) for longitudi-

nal analysis for AD diagnosis [49] . Hong et.al. put forward a novel

framework based on Long short-term memory (LSTM) to analyze

longitudinal dataset [50] . The longitudinal prediction experimental

results at multiple points are shown in Fig. 5 . Obviously, the pro-

posed CTDE model achieves the best performance. 

5.2. Advantages of correntropy 

The related experiment is conducted to evaluate the effective-

ness of the correntropy. In scenario 1, the group LASSO incorpo-

rating correntropy framework is downgraded to the group LASSO
odel (L) model when we remove the correntropy. Hence, the pro-

osed CDE model also becomes the LDE model. We compare the

erformance of CDE model with LDE model, CLS model, and group

ASSO model with SVR (LS). To assess the scores prediction per-

ormance, we compute the MAE values between the ground truth

nd the predicted scores. The results are plotted in Fig. 6 . It is ob-

erved that CL model obtains more accurate predictions than the

S model. On the other hand, the CDE model obtains lower MAE

alues than LDE and other models. The results demonstrate that

he using of correntropy method is quite effective. 

.3. Effect of DPN 

Simulations are conducted in order to deepen the understand-

ng of DPN. The output of each layer is passed to SVR and results

f MAE are shown in Fig. 7 . It is found that the features of the

rst layer carry more discriminative information than other layers,

nd thus the corresponding prediction is consistently more accu-

ate than that of other layers. Hence, we choose to ensemble the

esults of concatenated layers rather than the results of each layer.
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.4. Most discriminative regions 

In order to find the frequency distribution of discriminative

rain regions, we perform four experiments to discover potential

elevant biomarkers. It is meaningful for us to find useful infor-

ation from the biomarkers to discover the underlying relation-

hips for clinical scores prediction. We calculate the frequency of

ccurrences of each feature and sort them in an ascending way.

astly, we find the most discriminative regions and map them in

he template space. In the feature selection model, ρ0 is the most

nfluential parameter over the number of selected features. In or-

er to predict the four type scores (ADAS-Cog, CDR-GLOB, CDR-

OB, and MMSE), ρ0 is set to 20, 10, 1, and 20, respectively, to

elect the corresponding features. The feature maps for the pre-

iction of different scores are shown in Fig. 8 . It is sensible to ob-

erve certain consistence across different scores prediction as these

cores are highly correlated. Specifically, the selected brain regions,

uch as amygdala, hippocampus areas, temporal pole, inferior tem-

oral gyrus, and uncus are considered as AD biomarkers in previ-

us literatures [51 , 52] . The corresponding brain regions are listed

n Appendix A . 

. Conclusion 

In this work, we introduce a deep and joint learning along with

 two scenarios regression model for AD scores prediction. Differ-

nt from the commonly used scores prediction methods which fo-

us on the machine learning or deep learning based on baseline

ataset, we utilize all the previous time points dataset to obtain

he predicted scores at the next time point. Specifically, we inte-

rate the feature selection with fused smoothness term, and em-

loy the correntropy to construct the joint learning model. Mean-

hile, the DPN algorithm is proposed to further improve feature

epresentation, and then SVR is applied to predict four type of

linical scores. The extensive experiments on ADNI dataset demon-

trate that our method presents superior performance than its

ounterparts. In the meantime, the proposed composite model out-

erforms its partial models in scores prediction accuracy. Further-

ore, we generate relevant ROIs according to their weighing values

o demonstrate the important brain regions for further studies. 

Despite the good performance of the proposed model, there are

lso several limitations of our current study that should be ex-

lored in future study. First, as the experimental data, we just col-

ect the longitudinal MRI data from ADNI. It will be more inter-

Num Name Num Name 

1 medial front-orbital gyrus right 25 frontal lobe WM left 

2 middle frontal gyrus right 26 precuneus right 

3 lateral ventricle left 27 subthalamic nucleus left 

4 insula right 28 posterior limb of internal capsule 

5 precentral gyrus right inc. cerebral peduncle left 

6 lateral front-orbital gyrus right 29 posterior limb of internal capsule 

7 cingulate region right inc. cerebral peduncle right 

8 lateral ventricle right 30 hippocampal formation right 

9 medial frontal gyrus left 31 inferior occipital gyrus left 

10 superior frontal gyrus right 32 superior occipital gyrus right 

11 globus palladus right 33 caudate nucleus left 

12 globus palladus left 34 supramarginal gyrus left 

13 putamen left 35 anterior limb of internal capsule left 

14 inferior frontal gyrus left 36 occipital lobe WM right 

15 putamen right 37 middle frontal gyrus left 

16 frontal lobe WM right 38 superior parietal lobule left 

17 parahippocampal gyrus left 39 caudate nucleus right 

18 angular gyrus right 40 cuneus left 

19 temporal pole right 41 precuneus left 

20 subthalamic nucleus right 42 parietal lobe WM left 

21 nucleus accumbens right 43 temporal lobe WM right 

22 uncus right 44 supramarginal gyrus right 

23 cingulate region left 45 superior temporal gyrus left 

24 fornix left 46 uncus left 
sting to learn more knowledge from multiple modalities, such as

unctional MRI (fMRI), PET and diffusion tensor imaging (DTI). Us-

ng biomarkers of multiple modalities may reveal hidden informa-

ion that may be overlooked by using a single modality. Second,

he relevant clinical details (e.g., age, gender, education level) and

ther physiological factors of AD were not taken into account in

he experiments. Considering a variety of clinical details and psy-

hosocial factors, we can further identify the impact of related in-

ormation and study the progression of Alzheimer’s disease. 

In the future, we will try to conduct more sophisticated fea-

ure selection and encoding methods, for further improving clinical

cores prediction performance. Especially, we plan to investigate

eature selection methods using both features similarity and adap-

ive sparseness learning [53] . Besides, we try to collect other imag-

ng modalities and employ the fusion method [54] to construct an

ffective prediction model. Finally, we are testing the performance

f the proposed method on other patient groups. 
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ppendix A: List of 93 ROIs 

Name Num Name 

middle occipital gyrus right 71 parietal lobe WM right 

middle temporal gyrus left 72 insula left 

lingual gyrus left 73 postcentral gyrus right 

superior frontal gyrus left 74 lingual gyrus right 

nucleus accumbens left 75 medial frontal gyrus right 

occipital lobe WM left 76 amygdala left 

postcentral gyrus left 77 medial occipitotemporal gyrus left 

inferior frontal gyrus right 78 parahippocampal gyrus right 

precentral gyrus left 79 anterior limb of internal capsule right 

temporal lobe WM left 80 middle temporal gyrus right 

medial front-orbital gyrus left 81 occipital pole right 

perirhinal cortex right 82 corpus callosum 

superior parietal lobule right 83 amygdala right 

lateral front-orbital gyrus left 84 inferior temporal gyrus right 

perirhinal cortex left 85 superior temporal gyrus right 

inferior temporal gyrus left 86 middle occipital gyrus left 

temporal pole left 87 angular gyrus left 

entorhinal cortex left 88 medial occipitotemporal gyrus right 

inferior occipital gyrus right 89 cuneus right 

superior occipital gyrus left 90 lateral occipitotemporal gyrus left 

lateral occipitotemporal gyrus right 91 thalamus right 

entorhinal cortex right 92 occipital pole left 

hippocampal formation left 93 fornix right 

thalamus left 

eferences 

[1] A.S. Association , 2018 Alzheimer’s disease facts and figures, Alzheimer’s De-

mentia 14 (2018) 367–429 . 
[2] C. Patterson , World Alzheimer Report 2018—The State of the Art of Dementia

Research: New Frontiers, Alzheimer’s Disease International (ADI), London, UK,
2018 . 

[3] T. Zhou , M. Liu , K.-H. Thung , D. Shen , Latent representation learning for

Alzheimer’s disease diagnosis with incomplete multi-modality neuroimaging
and genetic data, IEEE Trans. Med. Imaging 38 (2019) 2411–2422 . 

[4] T. Tong , K. Gray , Q. Gao , L. Chen , D. Rueckert , A. s. D. N. Initiative , Multi–
modal classification of Alzheimer’s disease using nonlinear graph fusion, Pat-

tern Recognit. 63 (2017) 171–181 . 

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100012326
https://doi.org/10.13039/501100012234
https://doi.org/10.13039/501100012156
https://doi.org/10.13039/501100009019
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0003
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0003
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0003
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0003
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0003
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0004
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0004
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0004
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0004
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0004
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0004
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0004


12 B. Lei, M. Yang and P. Yang et al. / Pattern Recognition 102 (2020) 107247 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B  

Z  

U  

g  

i  

t  

T  

I  

 

o

M  

U  

M  

z  

a

P  

v  

d  

U  

a

F  

i  
[5] B. Shi , Y. Chen , P. Zhang , C.D. Smith , J. Liu , A. s. D. N. Initiative , Nonlinear fea-
ture transformation and deep fusion for Alzheimer’s disease staging analysis,

Pattern Recognit. 63 (2017) 4 87–4 98 . 
[6] A. Nordberg , J.O. Rinne , A. Kadir , B. Långström , The use of PET in Alzheimer

disease, Nat. Rev. Neurol. 6 (2010) 78–87 . 
[7] L.K. McEvoy , C. Fennema-Notestine , J.C. Roddey , D.J. Hagler Jr , D. Holland ,

D.S. Karow , et al. , Alzheimer disease: quantitative structural neuroimaging for
detection and prediction of clinical and structural changes in mild cognitive

impairment, Radiology 251 (2009) 195–205 . 

[8] R. Cuingnet , E. Gerardin , J. Tessieras , G. Auzias , S. Lehéricy , M.-O. Habert , et al. ,
Automatic classification of patients with Alzheimer’s disease from structural

MRI: a comparison of ten methods using the ADNI database, Neuroimage 56
(2011) 766–781 . 

[9] J. Peng , X. Zhu , Y. Wang , L. An , D. Shen , Structured sparsity regularized mul-
tiple kernel learning for Alzheimer’s disease diagnosis, Pattern Recognit. 88

(2019) 370–382 . 

[10] T. Tong , R. Wolz , Q. Gao , R. Guerrero , J.V. Hajnal , D. Rueckert , et al. , Multiple
instance learning for classification of dementia in brain MRI, Med. Image Anal.

18 (2014) 808–818 . 
[11] S. Liu , S. Liu , W. Cai , H. Che , S. Pujol , R. Kikinis , et al. , Multimodal neuroimag-

ing feature learning for multiclass diagnosis of Alzheimer’s disease, IEEE Trans.
Biomed. Eng. 62 (2014) 1132–1140 . 

[12] C.M. Stonnington , C. Chu , S. Klöppel , C.R. Jack Jr , J. Ashburner , R.S. Frackowiak ,

et al. , Predicting clinical scores from magnetic resonance scans in Alzheimer’s
disease, Neuroimage 51 (2010) 1405–1413 . 

[13] J. Morris , Current vision and scoring rules The Clinical Dementia Rating (CDR),
Neurology 43 (1993) 2412–2414 . 

[14] L. Huang , Y. Jin , Y. Gao , K.-H. Thung , D. Shen , A. s. D. N. Initiative , Longitudinal
clinical score prediction in Alzheimer’s disease with soft-split sparse regres-

sion based random forest, Neurobiol. Aging 46 (2016) 180–191 . 

[15] Y. Wang , Y. Fan , P. Bhatt , C. Davatzikos , High-dimensional pattern regression
using machine learning: from medical images to continuous clinical variables,

Neuroimage 50 (2010) 1519–1535 . 
[16] S. Duchesne , A. Caroli , C. Geroldi , D.L. Collins , G.B. Frisoni , Relating one-year

cognitive change in mild cognitive impairment to baseline MRI features, Neu-
roimage 47 (2009) 1363–1370 . 

[17] S.E. Hardy , H. Allore , S.A. Studenski , Missing data: a special challenge in aging

research, J. Am. Geriatr. Soc. 57 (2009) 722–729 . 
[18] W. Zheng , X. Zhu , G. Wen , Y. Zhu , H. Yu , J. Gan , Unsupervised feature selection

by self-paced learning regularization, Pattern Recognit. Lett. (2018) . 
[19] X. Zhu , H.-I. Suk , S.-W. Lee , D. Shen , Subspace regularized sparse multitask

learning for multiclass neurodegenerative disease identification, IEEE Trans.
Biomed. Eng. 63 (2015) 607–618 . 

[20] B. Jie , M. Liu , J. Liu , D. Zhang , D. Shen , Temporally constrained group sparse

learning for longitudinal data analysis in Alzheimer’s disease, IEEE Trans.
Biomed. Eng. 64 (2017) 238–249 . 

[21] L. Zhang , L. Wang , W. Lin , Conjunctive patches subspace learning with side
information for collaborative image retrieval, IEEE Trans. Image Process. 21

(2012) 3707–3720 . 
[22] K. Wang , R. He , L. Wang , W. Wang , T. Tan , Joint feature selection and subspace

learning for cross-modal retrieval, IEEE Trans. Pattern Anal. Mach. Intell. 38
(2016) 2010–2023 . 

[23] Y. Shi , H.-I. Suk , Y. Gao , D. Shen , Joint coupled-feature representation and cou-

pled boosting for AD diagnosis, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition(CVPR), 2014, pp. 2721–2728 . 

[24] W. Liu , P.P. Pokharel , J.C. Príncipe , Correntropy: Properties and applications
in non-Gaussian signal processing, IEEE Trans. Signal Process. 55 (2007)

5286–5298 . 
[25] Z. Hu , J. Tang , Z. Wang , K. Zhang , L. Zhang , Q. Sun , Deep learning for im-

age-based cancer detection and diagnosis − a survey, Pattern Recognit. 83

(2018) 134–149 . 
[26] H.-I. Suk , S.-W. Lee , D. Shen , A. s. D. N. Initiative , Hierarchical feature represen-

tation and multimodal fusion with deep learning for AD/MCI diagnosis, Neu-
roimage 101 (2014) 569–582 . 

[27] A. Ortiz , J. Munilla , J.M. Gorriz , J. Ramirez , Ensembles of deep learning archi-
tectures for the early diagnosis of the Alzheimer’s disease, Int. J. Neural Syst.

26 (2016) 1650025 . 

[28] J. Shi , S. Zhou , X. Liu , Q. Zhang , M. Lu , T. Wang , Stacked deep polynomial net-
work based representation learning for tumor classification with small ultra-

sound image dataset, Neurocomputing 194 (2016) 87–94 . 
[29] J.-Z. Cheng , D. Ni , Y.-H. Chou , J. Qin , C.-M. Tiu , Y.-C. Chang , et al. , Comput-

er-aided diagnosis with deep learning architecture: applications to breast le-
sions in US images and pulmonary nodules in CT scans, Sci. Rep. 6 (2016)

24454 . 

[30] I. Santamaría , P.P. Pokharel , J.C. Principe , Generalized correlation function: defi-
nition, properties, and application to blind equalization, IEEE Trans. Signal Pro-

cess. 54 (2006) 2187–2197 . 
[31] E. Yildizer , A.M. Balci , M. Hassan , R. Alhajj , Efficient content-based image re-

trieval using multiple support vector machines ensemble, Expert Syst. Appl. 39
(2012) 2385–2396 . 

[32] K. Ito , B. Corrigan , Q. Zhao , J. French , R. Miller , H. Soares , et al. , Disease

progression model for cognitive deterioration from Alzheimer’s Disease Neu-
roimaging Initiative database, Alzheimer’s Dementia 7 (2011) 151–160 . 

[33] D. Zhang , Y. Wang , L. Zhou , H. Yuan , D. Shen , A. s. D. N. Initiative , Multimodal
classification of Alzheimer’s disease and mild cognitive impairment, Neuroim-

age 55 (2011) 856–867 . 
[34] J.G. Sled , A.P. Zijdenbos , A.C. Evans , A nonparametric method for automatic cor-
rection of intensity nonuniformity in MRI data, IEEE Trans. Med. Imaging 17

(1998) 87–97 . 
[35] Y. Zhang , M. Brady , S. Smith , Segmentation of brain MR images through a hid-

den Markov random field model and the expectation-maximization algorithm,
IEEE Trans. Med. Imaging 20 (2001) 45–57 . 

[36] D. Shen , C. Davatzikos , HAMMER: hierarchical attribute matching mechanism
for elastic registration, IEEE Trans. Med. Imaging 21 (2002) 1421–1439 . 

[37] P. Cao , X. Liu , J. Yang , D. Zhao , M. Huang , O. Zaiane , l 2,1 -l 1 regularized nonlinear

multi-task representation learning based cognitive performance prediction of
Alzheimer’s disease, Pattern Recognit. 79 (2018) 195–215 . 

[38] J. Liu , J. Ye , Efficient Euclidean projections in linear time, in: Proceedings of
the 26th Annual International Conference on Machine Learning (ICML), 2009,

pp. 657–664 . 
[39] J. Yan , T. Li , H. Wang , H. Huang , J. Wan , K. Nho , et al. , Cortical surface biomark-

ers for predicting cognitive outcomes using group l 2,1 norm, Neurobiol. Aging

36 (2015) S185–S193 . 
[40] X. Zhu , X. Li , S. Zhang , C. Ju , X. Wu , Robust joint graph sparse coding for un-

supervised spectral feature selection, IEEE Trans. Neural Netw. Learn. Syst. 28
(2017) 1263–1275 . 

[41] R. Tibshirani , M. Saunders , S. Rosset , J. Zhu , K. Knight , Sparsity and smoothness
via the fused lasso, J. R. Stat. Soc. 67 (2005) 91–108 . 

[42] Z. Zhao , L. Zhang , X. He , W. Ng , Expert finding for question answering via

graph regularized matrix completion, IEEE Trans. Knowl. Data Eng. 27 (2014)
993–1004 . 

[43] Y. Nesterov , Gradient methods for minimizing composite functions, Math. Pro-
gram. 140 (2013) 125–161 . 

44] Z. Zha , X. Zhang , Q. Wang , Y. Bai , Y. Chen , L. Tang , et al. , Group sparsity resid-
ual constraint for image denoising with external nonlocal self-similarity prior,

Neurocomputing 275 (2018) 2294–2306 . 

[45] X. Chen , W. Pan , J.T. Kwok , J.G. Carbonell , Accelerated gradient method for
multi-task sparse learning problem, in: 2009 Ninth IEEE International Confer-

ence on Data Mining (ICDM), 2009, pp. 746–751 . 
[46] J. Shi , X. Zheng , Y. Li , Q. Zhang , S. Ying , Multimodal neuroimaging feature

learning with multimodal stacked deep polynomial networks for diagnosis of
Alzheimer’s disease, IEEE J. Biomed. Health Inf. 22 (2017) 173–183 . 

[47] B. Gaonkar , R.T. Shinohara , C. Davatzikos , A.D.N. Initiative , Interpreting support

vector machine models for multivariate group wise analysis in neuroimaging,
Med. Image Anal. 24 (2015) 190–204 . 

[48] J. Shi , J. Wu , Y. Li , Q. Zhang , S. Ying , Histopathological image classification with
color pattern random binary hashing-based pcanet and matrix-form classifier,

IEEE J. Biomed. Health Inf. 21 (2017) 1327–1337 . 
[49] R. Cui , M. Liu , A. s. D. N. Initiative , RNN-based longitudinal analysis for diag-

nosis of Alzheimer’s disease, Comput. Med. Imaging Graph. 73 (2019) 1–10 . 

[50] X. Hong , R. Lin , C. Yang , N. Zeng , C. Cai , J. Gou , et al. , Predicting Alzheimer’s
disease using LSTM, IEEE Access 7 (2019) 80893–80901 . 

[51] C. Misra , Y. Fan , C. Davatzikos , Baseline and longitudinal patterns of brain at-
rophy in MCI patients, and their use in prediction of short-term conversion to

AD: results from ADNI, Neuroimage 44 (2009) 1415–1422 . 
[52] A. Convit , J. De Asis , M. De Leon , C. Tarshish , S. De Santi , H. Rusinek , At-

rophy of the medial occipitotemporal, inferior, and middle temporal gyri in
non-demented elderly predict decline to Alzheimer’s disease, Neurobiol. Aging

21 (20 0 0) 19–26 . 

[53] H. Lei , Z. Huang , F. Zhou , A. Elazab , E.-L. Tan , H. Li , et al. , Parkinson’s dis-
ease diagnosis via joint learning from multiple modalities and relations, IEEE

J. Biomed. Health Inf. 23 (2018) 1437–1449 . 
[54] F. Liu , C.-Y. Wee , H. Chen , D. Shen , Inter-modality relationship constrained mul-

ti-modality multi-task feature selection for Alzheimer’s Disease and mild cog-
nitive impairment identification, Neuroimage 84 (2014) 466–475 . 

aiying Lei received her M. Eng degree in electronics science and technology from

hejiang University, China in 2007, and Ph.D degree from Nanyang Technological
niversity (NTU), Singapore in 2013. She is currently with School of Biomedical En-

ineering, Health Science Center, Shenzhen University, China. Her current research
nterests include medical image analysis, machine learning, and pattern recogni-

ion. Dr. Lei has coauthored more than 130 scientific articles, e.g., IEEE TCYB, IEEE

MI, IEEE TBME, IEEE JBHI. Pattern Recognition and Information Sciences. She is an
EEE senior member and serves as the editorial board member of Scientific Reports,

Frontiers in Neuroinformatics, Frontiers in Aging Neuroscience, and Academic Editor
f Plos One. 

engya Yang received the B.Sc degree in Biomedical Engineering from Northeast
niversity, Qin Huangdao, China, in 2016. She is currently working toward her

.Eng degree in the School of Biomedical Engineering, Health Science Center, Shen-
hen University, Guangdong, China. His research interests include medical image

nalysis and deep learning. 

eng Yang received the B.Sc degree in Biomedical Engineering from Northeast Uni-

ersity, Qin Huangdao, China, in 2016. He is currently working toward his Ph.D
egree in the School of Biomedical Engineering, Health Science Center, Shenzhen

niversity, Guangdong, China. His research interests include medical image analysis
nd machine learning. 

eng Zhou received the Bachelor’s degree from Ningbo University, Ningbo, China,
n 2005, and the M.S. degree from Zhejiang University, Hangzhou, China, in 2007,

http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0006
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0006
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0006
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0006
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0006
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0023
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0023
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0023
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0023
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0023
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0035
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0035
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0035
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0035
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0036
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0036
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0036
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0038
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0038
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0038
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0039
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0039
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0039
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0039
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0039
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0039
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0039
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0039
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0040
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0040
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0040
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0040
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0040
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0040
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0041
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0041
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0041
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0041
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0041
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0041
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0042
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0042
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0042
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0042
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0042
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0043
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0043
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0045
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0045
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0045
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0045
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0045
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0046
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0046
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0046
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0046
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0046
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0046
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0047
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0047
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0047
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0047
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0047
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0048
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0048
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0048
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0048
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0048
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0048
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0049
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0049
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0049
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0049
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0050
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0050
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0050
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0050
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0050
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0050
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0050
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0050
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0051
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0051
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0051
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0051
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0052
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0052
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0052
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0052
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0052
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0052
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0052
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0053
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0053
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0053
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0053
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0053
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0053
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0053
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0053
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0054
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0054
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0054
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0054
http://refhub.elsevier.com/S0031-3203(20)30053-4/sbref0054


B. Lei, M. Yang and P. Yang et al. / Pattern Recognition 102 (2020) 107247 13 

b  

f  

n  

c  

S  

r

c

W  

s  

S  

c

W  

t  

d  

F  

G  

h  

v  

m

X  

i  

t  

C  

o  

K  

r  

S  

i

T  

v  

t  

s  

t

X  

H  

g  

H  

a  

b  

i  

u

S  

H  

T  

s  

S  

r  

t

oth in electronic engineering, and the Ph.D degrees in human factors engineering
rom Nanyang Technological University, Singapore, in 2011, and in mechanical engi-

eering from the Georgia Institute of Technology, Atlanta, GA, USA, in 2014. He is
urrently an Assistant Professor at the Department of Industrial and Manufacturing

ystems Engineering, The University of Michigan, Dearborn, MI, USA. His current
esearch interests include engineering design, human factors engineering, human–

omputer interaction, and user research. 

en Hou received her Ph.D degree in Signal Processing from Swinburne Univer-

ity in 2015. She was with College of Information Engineering, Shenzhen University,
henzhen, China. Her research interests include medical image analysis, signal pro-

essing. 

enbin Zou received the M.E. degree in software engineering with a specializa-

ion in multimedia technology from Peking University, China, in 2010, and the Ph.D

egree from the National Institute of Applied Sciences, Rennes, France, in 2014.
rom 2014 to 2015, he was a Researcher with the UMR Laboratoire d’informatique

aspard-Monge, CNRS, and the École des Ponts ParisTech, France. Since 2015, he
as been with the Faculty of the College of Information Engineering, Shenzhen Uni-

ersity, China. His current research interests include saliency detection, object seg-
entation, and semantic segmentation. 

ia Li received the B.S. and M.S. degrees in electronic engineering and signal and

nformation processing from Xidian University in 1989 and 1992, respectively, and
he Ph.D degree from the Department of Information Engineering Philosophy, The

hinese University of Hong Kong, in 1997. She was the former Dean of the College
f Information Engineering, Shenzhen University, and the Director of the Shenzhen

ey Laboratory of Advanced Communication and Information Processing. She is cur-
ently an Associate Vice-President with The Chinese University of Hong Kong at
henzhen. Her research interests include intelligent computing and its applications,

mage processing, and pattern recognition. 

ianfu Wang received his Ph.D degree in biomedical engineering from Sichuan Uni-

ersity in 1997. He is currently a Professor in School of Biomedical Engineering, and
he Associate Chair of Health Science Center, Shenzhen University, China. His re-

earch interests include ultrasound image analysis, medical image processing, pat-

ern recognition and medical imaging. 

iaohua Xiao received MD. degree from Zhongshan Medical University, in 20 0 0.

e has been engaged in clinical work of Neurology for more than 20 years and is
ood at diagnosis and treatment of epilepsy, vertigo, and cerebrovascular diseases.

e is proficient in neuroelectrophysiological examination and is good at diagnosis
nd treatment of epilepsy, motor neuron disease, and other neuromuscular diseases

y using neuroelectrophysiological examination technology. He has deep experience

n diagnosis and treatment of benign paroxysmal positional vertigo and is good at
sing manual reduction to treat benign paroxysmal positional vertigo. 

huqiang Wang received the Ph.D. degree from the City University of Hong Kong,
ong Kong, in 2012. From 2012 to 2013, he was a Research Scientist at Huawei

echnologies Noah’s Ark Lab. From 2013 to 2014, he held a Post-doctoral fellow-

hip in the University of Hong Kong. He is currently an Associate Professor with
henzhen Institutes of Advanced Technology, Chinese Academy of Science. His cur-

ent research interests include machine learning, medical image computing and op-
imization theory. 


	Deep and joint learning of longitudinal data for Alzheimer’s disease prediction
	1 Introduction
	2 Materials
	2.1 Data acquisition
	2.2 Feature extraction

	3 Methods
	3.1 System overview
	3.2 Feature selection via joint learning
	3.3 Feature encoding via deep polynomial network
	3.4 Weighted ensemble prediction of clinical scores

	4 Results
	4.1 Experiment setup
	4.2 Scenario 1: predictions with baseline dataset
	4.3 Scenario 2: predictions with longitudinal dataset
	4.4 Baseline predictions performance

	5 Discussion
	5.1 Advantages over state-of-art methods
	5.2 Advantages of correntropy
	5.3 Effect of DPN
	5.4 Most discriminative regions

	6 Conclusion
	Acknowledgments
	Appendix A: List of 93 ROIs
	References


